Maths Formula Compendium
Trigonometry
Name | $0\degree$ | $30\degree (\frac{\pi}{6})$ | $45\degree (\frac{\pi}{4})$ | $60\degree (\frac{\pi}{3})$ | $90\degree (\frac{\pi}{2})$ | $120\degree (\frac{2\pi}{3})$ | $135\degree (\frac{3\pi}{4})$ | $150\degree (\frac{5\pi}{6})$ | $180\degree (\pi)$ |
---|---|---|---|---|---|---|---|---|---|
$\sin$ | $0$ | $\frac{1}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | $1$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$ | $0$ |
$\cos$ | $1$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$ | $0$ | $-\frac{1}{2}$ | $-\frac{1}{\sqrt{2}}$ | $-\frac{\sqrt{3}}{2}$ | $-1$ |
$\tan$ | $0$ | $\frac{1}{\sqrt{3}}$ | $1$ | $\sqrt{3}$ | $\infin$ | $-\sqrt{3}$ | $-1$ | $-\frac{1}{\sqrt{3}}$ | $0$ |
$\cot$ | $\infin$ | $\sqrt{3}$ | $1$ | $\frac{1}{\sqrt{3}}$ | $0$ | $-\frac{1}{\sqrt{3}}$ | $-1$ | $\sqrt{3}$ | $-\infin$ |
$\sec$ | $1$ | $\frac{2}{\sqrt{3}}$ | $\sqrt{2}$ | $ 2 $ | $\infin$ | $-2$ | $-\sqrt{2}$ | $-\frac{2}{\sqrt{3}}$ | $-1$ |
$\cosec$ | $\infin$ | $2$ | $\sqrt{2}$ | $\frac{2}{\sqrt{3}}$ | $1$ | $\frac{2}{\sqrt{3}}$ | $\sqrt{2}$ | $2$ | $\infin$ |
Inverse Trigonometry
Domain (value) ($x$) | Range (Angle) ($\theta$) | |
---|---|---|
$sin^{-1}x$ | $[-1,1]$ | $[-\pi/2, \pi/2]$ |
$\cos^{-1}x$ | $[-1. 1]$ | $[0, \pi]$ |
$\tan^{-1}x$ | $R$ | $(-\pi/2, \pi/2)$ |
$\cot^{-1}x$ | $R$ | $(0, \pi)$ |
$\sec^{-1}x$ | $R- (-1, 1)$ | $[0, \pi-{\pi/2}$ |
$\cosec^{-1}x$ | $R-(-1, 1)$ | $[-\pi/2, \pi/2] - {0}$ |
Property 1 | Property 2 |
---|---|
$\sin^{-1}(\sin\theta) = \theta$ | $\sin(\sin^{-1}x) = x$ |
$\cos^{-1}(\cos\theta) = \theta$ | $\cos(\cos^{-1}x) = x$ |
$\tan^{-1}(\tan\theta) = \theta$ | $\tan(\tan^{-1}x) = x$ |
$\cosec^{-1}(\cosec\theta) = \theta$ | $\cosec(\cosec^{-1}x) = x$ |
$\sec^{-1}(\sec\theta) = \theta$ | $\sec(\sec^{-1}x) = x$ |
$\cot^{-1}(\cot\theta) = \theta$ | $\cot(\cot^{-1}x) = x$ |
Property 3 | |
---|---|
$sin^{-1}(-x) = -\sin^{-1}{x}$ | $cos^{-1}(-x) \pi -\cos^{-1}{x}$ |
$tan^{-1}(-x) = -\tan^{-1}{x}$ | $cot^{-1}(-x) \pi -\cot^{-1}{x}$ |
$cosec^{-1}(-x) = -\cosec^{-1}{x}$ | $sec^{-1}(-x) \pi -\sec^{-1}{x}$ |
Property 4 |
---|
$sin^{-1}(\frac{1}{x}) = \cosec^{-1}x$ |
$cos^{-1}(\frac{1}{x}) = \sec^{-1}x$ |
$tan^{-1}(\frac{1}{x}) = \cot^{-1}x$ |
Property 5 |
---|
$sin^{-1}x + \cos ^{-1}x = \frac{\pi}{2}$ |
$tan^{-1}x + \cot ^{-1}x = \frac{\pi}{2}$ |
$sec^{-1}x + \cosec ^{-1}x = \frac{\pi}{2}$ |
Property 6 |
---|
$\sin^{-1}x + \sin^{-1}y = \sin^{-1} \big(x\sqrt{1-y^2} + y\sqrt{1-x^2}\big)$ |
$\sin^{-1}x - \sin^{-1}y = \sin^{-1} \big(x\sqrt{1-y^2} - y\sqrt{1-x^2}\big)$ |
Property 7 |
---|
$\cos^{-1}x + \cos^{-1}y = \cos^{-1} \big(xy - \sqrt{1-x^2} \sqrt{1-y^2}\big)$ |
$\cos^{-1}x - \cos^{-1}y = \cos^{-1} \big(xy + \sqrt{1-x^2} \sqrt{1-y^2}\big)$ |
Property 8 |
---|
$\tan^{-1}x - \tan^{-1}{y} = \tan^{-1}\Big(\frac{x+y}{1-xy}\Big)$ |
$\tan^{-1}x + \tan^{-1}{y} = \tan^{-1}\Big(\frac{x-y}{1+xy}\Big)$ |
Property 9
$2\sin^{-1}x = 2 \sin^{-1}(\theta/2)$
$3\sin^{-1}x = \sin^{-1}(3x-4x^2)$
$2\cos^{-1}x = \cos^{-1}(2x^2-1)$
$3\cos^{-1}x = \cos^{-1}(4x^3 -3x)$
Property 10
$$ 2\tan^{-1}x = \begin{cases}\sin^{-1}\Big(\frac{2x}{1+x^2}\Big)\\cos^{-1}\Big(\frac{1-x^2}{1+x^2}\Big)\end{cases} $$
$1-\cos\theta = 2 \sin^2(\theta/2)$
$1+ \cos\theta = 2\,\cos^2(\theta/2)$
$\sin\theta = 2\sin(\theta/2)\cos(\theta/2)$
$2\sin^{-1}x + \sin^{-1}(-x) = \cos^{1}x$
Expression and Substitution
Expression | Substitution | Substitution |
---|---|---|
$a^2 + x^2$ | $x = a\tan\theta$ | $x = a\cot\theta$ |
$a^2-x^2$ | $x=a\sin\theta$ | $x=a\cos\theta$ |
$x^2-a^2$ | $x=a\sec\theta$ | $x=a\cosec\theta$ |
$\frac{a-x}{a+x}$ | $x=a\cos2\theta$ | |
$\frac{a^2+x^2}{a^2-x^2}$ | $x=a^2\cos2\theta$ |
Line Equations
-
$ax + by + c=0$
$m = -a/b$
-
One Point form of line
$$ y - y_1 = m (x-x_1) $$
-
Two point form of line
$$ y-y_1 = \frac{y_2-y_1}{x_2-x_1}{x-x_1} $$
-
Intercept Form of line
$$ \frac{x}{a} + \frac{y}{b} = 1 $$
-
Normal form of line
$$ x\cos \theta + y\sin\theta = P $$
-
Point Slope form
$$ y = mx+ c \\ \text{Where $m$ is slope of line defined as } m = \frac{y_2 - y_1}{x_2 - x_1} $$
Distance of a point from a line
$$ \text{Dist}_{PA}= \Bigg|{\frac{ax_1 + by_1 + c}{\sqrt{a^2+b^2}}}\Bigg| $$
Distance between two lines
$y = mx + c_1 \qquad y= mx+c_2$
$$ \text{d} = \Bigg| \frac{c_1 - c_2}{\sqrt{1+m^2}}\Bigg| = \Bigg|\frac{c_1 - c_2}{\sqrt{a^2+b^2}}\Bigg| $$
Angle between two lines
Where $m_1$ and $m_2$ are slopes of two lines.
$$ \tan\theta = \frac{m_2 - m_1}{1+m_2m_1} $$
- If line $l_1$ and $l_2$ are orthogonal to each other, then. $m_1m_2 = -1$
-
Collinearity of points
Slope of $AB$ = Slope of $AC$
Shapes CSA(Curved Surface Area), T(Total)SA, and volume
Frustum
$\text{CSA} = \pi l (r_1+ r_2)$
$\text{TSA} = \pi r_1^2 + \pi r_2^2 + \pi l(r_1+r_2)$
$\text{Volume} = \frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1r_2)$
where $l= \sqrt{h^2+(r_1-r_2)^2}$
Adjoint and Inverse
$A(\text{adj} A) = |A| I_n = (\text{adj}) A$ | |
$A^{-1} = \frac{1}{|A|} (\text{adj} A)$ | $|\text{adj} A| = |A|^{n-1}$ |
$(A^\top)^{-1} = (A^{-1})^\top$ | $\text{adj} \space(adj A) = |A|^{n-2} A$ |
$|A \enspace adj A| = |A|^{n}$ | $|\text{adj} \space(adj A)| = |A|^{(n-1)^{2}}$ |
$|A^\top| = |A| $ | |
$AA^{-1} = I_n$ | |
$(A^{-1})^{-1} = A$ | |
$(AB)^{-1} = B^{-1}A^{-1}$ | |
$\text{adj}\space AB = (\text{adj} B)(\text{adj} A)$ | |
$|AB| = |A| |B|$ | |
$\text{adj}A^\top = (\text{adj} A)\top$ | |
$|KA| = K^n |A|$ | |
$AA^{-1}=I$ | |
$A^{-1}I = A^{-1}$ |
Finding Log
-
Given we need to find $\log$ of $\log 15.27$
- Move the decimal after 1st digit and introduce power of 10.
$$ \log \textcolor{#f56c42}1.\textcolor{#f56c42}5\textcolor{#ad42f5}2\textcolor{#f542bc}7 \times 10^{\textcolor{#42f5f2}1} $$
When the decimal is moved in left/right: $$ (-)\medspace \overrightarrow{\text{introduce negative powers}} \qquad \overleftarrow{\text{introduce positive powers}} \medspace(+) $$
-
Look for $\textcolor{#f56c42}{15}$th row and column with label $\textcolor{#ad42f5}2$. which is $\bold{\textcolor{#07fc03}{1818}}$.
-
Add Mean difference from column $\textcolor{#f542bc}7$ in the corresponding row. which is $\textcolor{#07fc03}{20}$
$$ 1818 + 20 = \bold{\textcolor{#07fc03}{1838}} $$
-
Write the exponent, insert decimal and write the value calculated in Step 3.
$$ \textcolor{#42f5f2}1.\textcolor{#07fc03}{1838} $$
-
So $\log 15.27 = \bold{\textcolor{#07fc03}{1.1838}}$
Finding AntiLog
-
Given we need to find Antilog of $15.5932$ $$ \log k = 15.5932 \\ k = Antilog (\medspace \textcolor{#42f5f2}{15}\textcolor{#f56c42}{.59}\textcolor{#ad42f5}3\textcolor{#f542bc}2\medspace) $$
-
Look for $0\textcolor{#f56c42}{.59}$th row and column with label $\textcolor{#ad42f5}3$. Which is $\bold{\textcolor{#07fc03}{3917}}$.
-
Add Mean difference from column $\textcolor{#f542bc}2$ to previous result. Which is $\textcolor{#07fc03}2$
$$ 3917 + 2 = \bold{\textcolor{#07fc03}{3919}} $$
-
Add $1$ to characteristic $\textcolor{#42f5f2}{15} = \textcolor{#07fc03}{16}$ and add insert the decimal from left calculated in step 2. That means we need to add decimal after $\textcolor{#07fc03}{16}$th position
$$ 3919\enspace0000\enspace0000\enspace000 .\\ \implies k = \bold{\textcolor{#07fc03}{3.919\times10^{15}}} $$
Quickly write the exponential form
Since, we want to put decimal just after 1st digit. We need to move decimal from 16th position to right after 1st digit; which will introduce +ve powers. ($16 -1 = \textcolor{#07fc03}{15}$). Since we moved 15 positions left.
$3.919 \times 10^{\textcolor{#07fc03}{15}}$