Maths Formula Compendium
Trigonometry
Name | $0\degree$ | $30\degree (\frac{\pi}{6})$ | $45\degree (\frac{\pi}{4})$ | $60\degree (\frac{\pi}{3})$ | $90\degree (\frac{\pi}{2})$ | $120\degree (\frac{2\pi}{3})$ | $135\degree (\frac{3\pi}{4})$ | $150\degree (\frac{5\pi}{6})$ | $180\degree (\pi)$ |
---|---|---|---|---|---|---|---|---|---|
$\sin$ | $0$ | $\frac{1}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | $1$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$ | $0$ |
$\cos$ | $1$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$ | $0$ | $-\frac{1}{2}$ | $-\frac{1}{\sqrt{2}}$ | $-\frac{\sqrt{3}}{2}$ | $-1$ |
$\tan$ | $0$ | $\frac{1}{\sqrt{3}}$ | $1$ | $\sqrt{3}$ | $\infin$ | $-\sqrt{3}$ | $-1$ | $-\frac{1}{\sqrt{3}}$ | $0$ |
$\cot$ | $\infin$ | $\sqrt{3}$ | $1$ | $\frac{1}{\sqrt{3}}$ | $0$ | $-\frac{1}{\sqrt{3}}$ | $-1$ | $\sqrt{3}$ | $-\infin$ |
$\sec$ | $1$ | $\frac{2}{\sqrt{3}}$ | $\sqrt{2}$ | $ 2 $ | $\infin$ | $-2$ | $-\sqrt{2}$ | $-\frac{2}{\sqrt{3}}$ | $-1$ |
$\cosec$ | $\infin$ | $2$ | $\sqrt{2}$ | $\frac{2}{\sqrt{3}}$ | $1$ | $\frac{2}{\sqrt{3}}$ | $\sqrt{2}$ | $2$ | $\infin$ |
Trigonometric Identities
$$ \sin(A + B + C) = \sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C - \sin A \sin B \sin C $$
$$ \cos(A + B + C) = \cos A \cos B \cos C - \cos A \sin B \sin C - \sin A \cos B \sin C - \sin A \sin B \cos C $$
$$ \tan(A + B + C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan C \tan A} $$
Double Angle Formulas
Product-to-Sum Formulas
- $2 \sin x \sin y = \cos(x - y) - \cos(x + y)$
- $2 \cos x \cos y = \cos(x + y) + \cos(x - y)$
- $2 \sin x \cos y = \sin(x + y) + \sin(x - y)$
- $2 \cos x \sin y = \sin(x + y) - \sin(x - y)$
Pythagorean Identities
- $\sin^2 \theta + \cos^2 \theta = 1$
- $1 + \tan^2 \theta = \sec^2 \theta$
- $1 + \cot^2 \theta = \csc^2 \theta$
- $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
- $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
General Solutions
Basic Cases
- $\sin \theta = 0 \implies \theta = n\pi$
- $\cos \theta = 0 \implies \theta = (2n + 1)\frac{\pi}{2}$
- $\tan \theta = 0 \implies \theta = n\pi$
Equality Cases
- $\sin \theta = \sin \beta \implies \theta = n\pi + (-1)^n \beta$
- $\cos \theta = \cos \beta \implies \theta = 2n\pi \pm \beta$
- $\tan \theta = \tan \beta \implies \theta = n\pi + \beta$
Derived Cases
- $\sin^2 \theta = \sin^2 \beta \implies \theta = n\pi \pm \beta$
- $\cos^2 \theta = \cos^2 \beta \implies \theta = 2n\pi \pm \beta$
- $\tan^2 \theta = \tan^2 \beta \implies \theta = n\pi \pm \beta$
Secant and Cosine Properties
- $-\cos \theta = \cos(\pi - \theta)$
- $-\sec \theta = \sec(\pi - \theta)$
- $\cos(- \theta) = \cos\theta$
- $\sec(-\theta) = \sec\theta$
Transformation Rule (TR)
$(\frac{n\pi}{2} + \theta)$
- If $n$ is odd $\Rightarrow$ TR will change.
$(n\pi + \theta)$
- If $n$ is odd/even $\Rightarrow$ TR will not change.
Inverse Trigonometry
Domain (value) ($x$) | Range (Angle) ($\theta$) | |
---|---|---|
$sin^{-1}x$ | $[-1,1]$ | $[-\pi/2, \pi/2]$ |
$\cos^{-1}x$ | $[-1. 1]$ | $[0, \pi]$ |
$\tan^{-1}x$ | $R$ | $(-\pi/2, \pi/2)$ |
$\cot^{-1}x$ | $R$ | $(0, \pi)$ |
$\sec^{-1}x$ | $R- (-1, 1)$ | $[0, \pi-{\pi/2}$ |
$\cosec^{-1}x$ | $R-(-1, 1)$ | $[-\pi/2, \pi/2] - {0}$ |
Property 1 | Property 2 |
---|---|
$\sin^{-1}(\sin\theta) = \theta$ | $\sin(\sin^{-1}x) = x$ |
$\cos^{-1}(\cos\theta) = \theta$ | $\cos(\cos^{-1}x) = x$ |
$\tan^{-1}(\tan\theta) = \theta$ | $\tan(\tan^{-1}x) = x$ |
$\cosec^{-1}(\cosec\theta) = \theta$ | $\cosec(\cosec^{-1}x) = x$ |
$\sec^{-1}(\sec\theta) = \theta$ | $\sec(\sec^{-1}x) = x$ |
$\cot^{-1}(\cot\theta) = \theta$ | $\cot(\cot^{-1}x) = x$ |
Property 3 | |
---|---|
$sin^{-1}(-x) = -\sin^{-1}{x}$ | $cos^{-1}(-x) = \pi -\cos^{-1}{x}$ |
$tan^{-1}(-x) = -\tan^{-1}{x}$ | $cot^{-1}(-x) = \pi -\cot^{-1}{x}$ |
$cosec^{-1}(-x) = -\cosec^{-1}{x}$ | $sec^{-1}(-x) = \pi -\sec^{-1}{x}$ |
Property 4 |
---|
$sin^{-1}(\frac{1}{x}) = \cosec^{-1}x$ |
$cos^{-1}(\frac{1}{x}) = \sec^{-1}x$ |
$tan^{-1}(\frac{1}{x}) = \cot^{-1}x$ |
Property 5 |
---|
$sin^{-1}x + \cos ^{-1}x = \frac{\pi}{2}$ |
$tan^{-1}x + \cot ^{-1}x = \frac{\pi}{2}$ |
$sec^{-1}x + \cosec ^{-1}x = \frac{\pi}{2}$ |
Property 6 |
---|
$\sin^{-1}x + \sin^{-1}y = \sin^{-1} \big(x\sqrt{1-y^2} + y\sqrt{1-x^2}\big)$ |
$\sin^{-1}x - \sin^{-1}y = \sin^{-1} \big(x\sqrt{1-y^2} - y\sqrt{1-x^2}\big)$ |
Property 7 |
---|
$\cos^{-1}x + \cos^{-1}y = \cos^{-1} \big(xy - \sqrt{1-x^2} \sqrt{1-y^2}\big)$ |
$\cos^{-1}x - \cos^{-1}y = \cos^{-1} \big(xy + \sqrt{1-x^2} \sqrt{1-y^2}\big)$ |
Property 8 |
---|
$\tan^{-1}x - \tan^{-1}{y} = \tan^{-1}\Big(\frac{x+y}{1-xy}\Big)$ |
$\tan^{-1}x + \tan^{-1}{y} = \tan^{-1}\Big(\frac{x-y}{1+xy}\Big)$ |
Property 9
Property 10
$$
2\tan^{-1}x = \begin{cases}\sin^{-1}\Big(\frac{2x}{1+x^2}\Big)\\cos^{-1}\Big(\frac{1-x^2}{1+x^2}\Big)\end{cases}
$$
$1-\cos\theta = 2 \sin^2(\theta/2)$
$1+ \cos\theta = 2\,\cos^2(\theta/2)$
$\sin\theta = 2\sin(\theta/2)\cos(\theta/2)$
$2\sin^{-1}x + \sin^{-1}(-x) = \cos^{-1}x$
Expression and Substitution
Expression | Substitution | Substitution |
---|---|---|
$a^2 + x^2$ | $x = a\tan\theta$ | $x = a\cot\theta$ |
$a^2-x^2$ | $x=a\sin\theta$ | $x=a\cos\theta$ |
$x^2-a^2$ | $x=a\sec\theta$ | $x=a\cosec\theta$ |
$\sqrt{\frac{a-x}{a+x}}$ | $x=a\cos2\theta$ | |
$\sqrt{\frac{a^2+x^2}{a^2-x^2}}$ | $x=a^2\cos2\theta$ |
Differentiation
- $a^{\log_a x} = x$
- $x^{\log_a y} = y^{\log_a x}$
Integration Formulas
Basic Integration Rules
- $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$
- $\int \frac{1}{x} \, dx = \ln x + C$
- $\int e^x \, dx = e^x + C$
- $\int a^x \, dx = \frac{a^x}{\ln a} + C$
- $\int \sin x \, dx = -\cos x + C$
- $\int \cos x \, dx = \sin x + C$
- $\int \sec^2 x \, dx = \tan x + C$
- $\int \csc^2 x \, dx = -\cot x + C$
- $\int \sec x \tan x \, dx = \sec x + C$
- $\int \csc x \cot x \, dx = -\csc x + C$
- $\int \cot x \, dx = \ln |\sin x| + C$
- $\int \tan x \, dx = -\ln |\cos x| + C = \ln |\sec x| + C$
- $\int \sec x \, dx = \ln |\sec x + \tan x| + C$
- $\int \csc x \, dx = \ln |\csc x - \cot x| + C$
Inverse Trigonometric Integrals
- $\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \left(\frac{x}{a}\right) + C$
- $\int \frac{-1}{\sqrt{a^2 - x^2}} \, dx = \cos^{-1} \left(\frac{x}{a}\right) + C$
- $\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$
- $\int \frac{-1}{x^2 + a^2} \, dx = \frac{1}{a} \cot^{-1} \left(\frac{x}{a}\right) + C$
- $\int \frac{1}{x \sqrt{x^2 + a^2}} \, dx = \frac{1}{a} \sec^{-1} \left|\frac{x}{a}\right| + C$
- $\int \frac{-1}{x \sqrt{x^2 - a^2}} \, dx = \frac{-1}{a} \csc^{-1} \left|\frac{x}{a}\right| + C$
Logarithmic and Advanced Integrals
- $\int e^{x} f(x) + f'(x) \, dx = e^x f(x) + C$
- $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \ln |x + \sqrt{x^2 + a^2}| + C$
- $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left|\frac{x - a}{x + a}\right| + C$
- $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left|\frac{a + x}{a - x}\right| + C$
- $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left|\frac{a + x}{x - a}\right| + C$
Additional Properties
- $\int k f(x) \, dx = k \int f(x) \, dx$
- $\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$
- $\int c \, dx = c x + C$
Line Equations
-
$ax + by + c=0$
$m = -a/b$ (Slope of line)
-
One Point form of line
$$
y - y_1 = m (x-x_1)
$$
- Two point form of line
$$ y-y_1 = \frac{y_2-y_1}{x_2-x_1}{x-x_1} $$
- Intercept Form of line
$$ \frac{x}{a} + \frac{y}{b} = 1 $$
- Normal form of line
$$ x\cos \theta + y\sin\theta = P $$
- Point Slope form
$$ y = mx+ c \\ \text{Where $m$ is slope of line defined as } m = \frac{y_2 - y_1}{x_2 - x_1} $$
Distance of a point from a line
$$ \text{Dist}_{PA}= \Bigg|{\frac{ax_1 + by_1 + c}{\sqrt{a^2+b^2}}}\Bigg| $$
Distance between two lines
$y = mx + c_1 \qquad y= mx+c_2$
$$ \text{d} = \Bigg| \frac{c_1 - c_2}{\sqrt{1+m^2}}\Bigg| = \Bigg|\frac{c_1 - c_2}{\sqrt{a^2+b^2}}\Bigg| $$
Angle between two lines
Where $m_1$ and $m_2$ are slopes of two lines.
$$ \tan\theta = \frac{m_2 - m_1}{1+m_2m_1} $$
- If line $l_1$ and $l_2$ are orthogonal to each other, then. $m_1m_2 = -1$
- Collinearity of points
Slope of $AB$ = Slope of $AC$
Shapes CSA(Curved Surface Area), T(Total)SA, and volume
Frustum
$\text{CSA} = \pi l (r_1+ r_2)$
$\text{TSA} = \pi r_1^2 + \pi r_2^2 + \pi l(r_1+r_2)$
$\text{Volume} = \frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1r_2)$
where $l= \sqrt{h^2+(r_1-r_2)^2}$
Adjoint and Inverse
Binomial Theorem
Initial conditions:
Basic expansion:
$$(x+a)^n = {^nc_0}x^na^0 + {^nc_1}x^{n-1}a^1 + {^nc_2}x^{n-2}a^2 + ... + {^nc_n}x^0a^n$$
Sum and difference formulas:
$$(x+a)^n + (x-a)^n = 2[{^nc_0}x^na^0 + {^nc_2}x^{n-2}a^2 + {^nc_4}x^{n-4}a^4 + ...]$$ $$(x+a)^n - (x-a)^n = 2[{^nc_1}x^{n-1}a^1 + {^nc_3}x^{n-3}a^3 + {^nc_5}x^{n-5}a^5 + ...]$$
Number of terms:
When n is odd | When n is even | |
---|---|---|
(x+a)^n + (x-a)^n | $(\frac{n+1}{2})$ terms | $(\frac{n}{2})$ terms |
(x+a)^n - (x-a)^n | $(\frac{n+1}{2})$ terms | $(\frac{n}{2})$ terms |
General Term and Middle Term
General term: $t_{r+1} = {^nc_r}x^{n-r}a^r$
Middle term occurs at:
-
If n is odd: $(\frac{n+1}{2})$ & $(\frac{n+3}{2})$ terms
-
If n is even: $(\frac{n}{2}+1)$ terms
Coefficient Tables
Coefficient of | Binomial Expression | is |
---|---|---|
$(r+1)^{\text{th}}$ | $(1+x)^n$ | ${^nc_r}$ |
$x^r$ | $(1+x)^n$ | ${^nc_r}$ |
$x^r$ | $(1-x)^n$ | $(-1)^r\enspace{^nc_r}$ |
$(r+1)^{\text{th}}$ | $(1-x)^n$ | $(-1)^r\enspace{^nc_r}$ |
Relations
Probability
Operation | Notation |
---|---|
A or B | $A \cup B$ |
A and B | $A \cap B$ |
A but not B | $A \cap \bar{B}$ |
B but not A | $\bar{A} \cap B$ |
Neither A nor B | $\bar{A} \cap \bar{B}$ |
At least one of A,B,& C | $A \cup B \cup C$ |
Exactly one of A,B | $(A \cap \bar{B}) \cup (\bar{A} \cap B)$ |
All Three of A,B,& C | $A \cap B \cap C$ |
Exactly Two of A,B,& C | $(A \cap B \cap \bar{C}) \cup (A \cap \bar{B} \cap C) \cup (\bar{A} \cap B \cap C)$ |
Exactly One of A,B,& C | $(A \cap \bar{B} \cap \bar{C}) \cup (\bar{A} \cap B \cap \bar{C}) \cup (\bar{A} \cap \bar{B} \cap C)$ |
The probability formulas:
-
Probability of occurrence of (A) only $$P(A \cap \bar{B}) = P(A) - P(A \cap B)$$
-
Probability of occurrence of (B) only $$P(\bar{A} \cap B) = P(B) - P(A \cap B)$$
-
P of occurrence of exactly one of A and B $$P(A \cap \bar{B}) \cup P(\bar{A} \cap B) \Rightarrow P(A \cup B) - P(A \cap B)$$
-
Three Events Occurring Simultaneously
$$P(A \cup B \cup C)$$
-
At Least Two Events: $$P(A \cap B) + P(B \cap C) + P(C \cap A) - 2P(A \cap B \cap C)$$
-
Exactly Two Out of Three Events: $$P(A \cap B) + P(B \cap C) + P(C \cap A) - 3P(A \cap B \cap C)$$
-
Exactly One Out of Three Events: $$P(A) + P(B) + P(C) - 2P(A \cap B) - 2P(B \cap C) - 2P(C \cap A) + 3P(A \cap B \cap C)$$
-
Exactly One Out of Two Events $$P(A \cap \overline{B}) + P(\overline{A} \cap B)$$
- Simplified Form: $$P(A) + P(B) - 2P(A \cap B) \implies P(A \cup B) - P(A \cap B)$$
-
Conditional probability P of E given A is true
$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$
$P(A \cap B \cap C \cap D) = P(A)P(B|A)P(C|A \cap B)P(D|A \cap B \cap C)$
$$P(E_i | A) = \frac{P(E_i) P(A|E_i)}{\sum^n_{i=1}P(E_i) P(A|E_i)}$$
Also noting the card suit groupings shown in the image:
- Hearts and Diamonds are grouped as Red
- Spades and Clubs are grouped as Black
Mean Variance & Standard Deviation
- $p$ means success event
- $q$ means not a sucess event
Probability Relations: $$P(X \leq x_i) = P(X = x_1) + P(X = x_2) + ... + P(X = x_i) = p_1 + p_2 + ... + p_i$$
$$P(X < x_i) = P(X = x_1) + P(X = x_2) + ... + P(X = x_{i-1}) = p_1 + p_2 + ... + p_{i-1}$$
$$P(X \geq x_i) = P(X = x_i) + P(X = x_{i+1}) + ... + P(X = x_n) = p_i + p_{i+1} + ... + p_n$$
$$P(X > x_i) = P(X = x_{i+1}) + P(X = x_{i+2}) + ... + P(X = x_n) = p_{i+1} + p_{i+2} + ... + p_n$$
$$P(x_i \leq X \leq x_j) = P(X = x_i) + P(X = x_{i+1}) + ... + P(X = x_j)$$
$$P(x_i < X < x_j) = P(X = x_{i+1}) + P(X = x_{i+2}) + ... + P(X = x_{j-1})$$
Mean Formulas(Matehmatical expectation):
- where $f$ = frequency
$$p_i = \frac{f_i}{N}$$
Variance Formula:
$$\frac{\sum x^2}{n} - (\frac{\sum x}{n})^2$$
Random Variable Property:
If $aX + b$ is a random variable with mean $aX + B$ and variance $a^2Var(X)$
Standard Deviation:
Arithmetic Progression (AP)
- General Form: $A, B, C$
$$2B = A + C$$
Formulas:
- $t_n = a + (n-1)d$
- $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$
- $S_n = \frac{n}{2} [a + a_n]$
- $t_n = S_n - S_{n-1}$
Arithmetic Mean (AM):
$G = \frac{a+b}{2}$
Geometric Progression (GP)
- General Form: $A, B, C$
$$B^2 = A \cdot C$$
Formulas:
- $t_n = a \cdot r^{n-1}$
- $S_n = a \frac{r^n - 1}{r - 1}, \, r \neq 1$
-
$S_\infty = \frac{a}{r-1}, \, |r| < 1$
-
where $r$ is common ratio
Geometric Mean (GM):
- Single Mean Between $a$ and $b$: $G = \sqrt{ab}$
- Multiple Means:
- $G_1 = ar^1$
- $G_2 = ar^2$
- $G_3 = ar^3$
- $r = \sqrt[n+1]{\frac{b}{a}}$
AP, GP, HP Relation:
$$AP \geq GP \geq HP$$
Special Sequences:
- Sum of Natural Numbers:
- Sum of Squares of Natural Numbers:
- Sum of Cubes of Natural Numbers:
Homogeneous and Non homogeneous equations solutions
- $\text{adj}(A)B = 0 \implies \text{Infinite Solutions}$
- $\text{adj}(A)B \neq 0 \implies \text{No Solution}$
- $\text{Infinite Solutions}$ put $z = k$ and solve
Finding Log
-
Given we need to find $\log$ of $\log 15.27$
- Move the decimal after 1st digit and introduce power of 10.
$$ \log \textcolor{#f56c42}1.\textcolor{#f56c42}5\textcolor{#ad42f5}2\textcolor{#f542bc}7 \times 10^{\textcolor{#42f5f2}1} $$
When the decimal is moved in left/right: $$ (-)\medspace \overrightarrow{\text{introduce negative powers}} \qquad \overleftarrow{\text{introduce positive powers}} \medspace(+) $$
-
Look for $\textcolor{#f56c42}{15}$th row and column with label $\textcolor{#ad42f5}2$. which is $\bold{\textcolor{#07fc03}{1818}}$.
-
Add Mean difference from column $\textcolor{#f542bc}7$ in the corresponding row. which is $\textcolor{#07fc03}{20}$
$$ 1818 + 20 = \bold{\textcolor{#07fc03}{1838}} $$
-
Write the exponent, insert decimal and write the value calculated in Step 3.
$$ \textcolor{#42f5f2}1.\textcolor{#07fc03}{1838} $$
-
So $\log 15.27 = \bold{\textcolor{#07fc03}{1.1838}}$
Finding AntiLog
-
Given we need to find Antilog of $15.5932$ $$ \log k = 15.5932 \\ k = Antilog (\medspace \textcolor{#42f5f2}{15}\textcolor{#f56c42}{.59}\textcolor{#ad42f5}3\textcolor{#f542bc}2\medspace) $$
-
Look for $0\textcolor{#f56c42}{.59}$th row and column with label $\textcolor{#ad42f5}3$. Which is $\bold{\textcolor{#07fc03}{3917}}$.
-
Add Mean difference from column $\textcolor{#f542bc}2$ to previous result. Which is $\textcolor{#07fc03}2$
$$ 3917 + 2 = \bold{\textcolor{#07fc03}{3919}} $$
-
Add $1$ to characteristic $\textcolor{#42f5f2}{15} = \textcolor{#07fc03}{16}$ and add insert the decimal from left calculated in step 2. That means we need to add decimal after $\textcolor{#07fc03}{16}$th position
$$ 3919\enspace0000\enspace0000\enspace000 .\\ \implies k = \bold{\textcolor{#07fc03}{3.919\times10^{15}}} $$
Quickly write the exponential form
Since, we want to put decimal just after 1st digit. We need to move decimal from 16th position to right after 1st digit; which will introduce +ve powers. ($16 -1 = \textcolor{#07fc03}{15}$). Since we moved 15 positions left.
$3.919 \times 10^{\textcolor{#07fc03}{15}}$