Propositional Logic
Content inspired from:
Computer Scientists use formal logical systems for expressing ideas about statements and whether they are true.
Propositional logic stems from the word "propositions", sentences that can be either true or false.
We'll often use a variable to stand for the proposition, like:
$$ P: \text{The robot is blue} $$
Now this proposition can be true/false depending on the current state of the world.
- $P$ holds true if robot is blue.
- $P$ is false if robot is not blue.
Truth Table
Truth table can display all of the possible combinations of the values for variables in a certain propositional logic and show if the formula holds true or false.
Modifying a logical formula
Negation ($\neg$)
So, to convey the statement, $P$ is not true, i.e., "The robot is blue" does not hold true we use this symbol $\neg$
$$ \neg P: \text{The robot is not blue} $$
Conjunction ($\land$)
This expresses, both statement holds true.
$$ P: \text{The robot is blue}\newline Q: \text{The robot has antenna} $$
Then conjunction ($P \land Q$) holds true when the robot is both blue and has antenna as well.
So, we can visualize this with truth table as:
$P$ | $Q$ | $P \land Q$ |
---|---|---|
$\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#f56c42}{\text{false}}$ |
$\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#f56c42}{\text{false}}$ |
$\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#f56c42}{\text{false}}$ |
$\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ |
Disjunction ($\lor$)
This expresses, at least one of them is true.
So, disjunction ($P \lor Q$) holds true when either the robot is blue or has antenna or both.
We can visualize this with truth table as:
$P$ | $Q$ | $P \lor Q$ |
---|---|---|
$\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#f56c42}{\text{false}}$ |
$\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ |
$\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#07fc03}{\text{true}}$ |
$\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ |
Exclusive Or ($\oplus$)
$P \oplus Q$ expresses, $P$ is true or $Q$ is true but not both.
$P$ | $Q$ | $P \oplus Q$ |
---|---|---|
$\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#f56c42}{\text{false}}$ |
$\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ |
$\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#07fc03}{\text{true}}$ |
$\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#f56c42}{\text{false}}$ |
Implication ($\implies$)
If propositions are:
$$ P: \text{The robot is blue}\newline Q: \text{The robot has antenna} $$
then, $P \implies Q$ (1), tells if the robot is blue, then it also must be true that the robot has antenna.
- Read as $P$ implies $Q$ or if $P$ then $Q$*.
$$ P \implies Q: $$
$P$ | $Q$ | $P \implies Q$ |
---|---|---|
$\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#07fc03}{\text{true}}$ (1) |
$\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ (2) |
$\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#f56c42}{\text{false}}$ |
$\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ |
- The formula doesn't state when $P$ is not true, it's assumed maybe the robot has antenna, maybe it doesn't.
- The formula doesn't state when $P$ is not true, it's assumed maybe the robot has antenna, maybe it doesn't.
Info
Imagine you said something like, "If it's my birthday, then I'll eat cake".
If it's your birthday, then as per statemtn you'll eat a cake, but it's doesn't mean that you may or may not eat a cake, if it's not your birthday.
This logic can be also be said as $\neg P \lor Q$. i.e., robot is not blue or robot has an antenna.
Biconditional ($\iff$)
This expresses, read as "if and only if".
- If $P$ is true, then $Q$ is true
- If $P$ is false, then $Q$ is false.
$P$ | $Q$ | $P \iff Q$ |
---|---|---|
$\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#07fc03}{\text{true}}$ |
$\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#f56c42}{\text{false}}$ |
$\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#f56c42}{\text{false}}$ | $\textcolor{#f56c42}{\text{false}}$ |
$\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ | $\textcolor{#07fc03}{\text{true}}$ |